Эта публикация цитируется в
2 статьях
Геометрия и топология
Group structures of a function spaces with the set-open topology
A. V. Osipovabc a Krasovskii Institute of Mathematics and Mechanics,
16 S.Kovalevskoy str.,
620990, Yekaterinburg, Russia
b Ural Federal University,
19 Mira str.,
620002, Yekaterinburg, Russia
c Ural State University of Economics,
62, 8th of March str.,
620219, Yekaterinburg, Russia
Аннотация:
In this paper, we find at the properties
of the family
$\lambda$ which imply that the space
$C(X,\mathbb{R}^{\alpha})$ — the set of all continuous mappings
on a Tychonoff space
$X$ to the space
$\mathbb{R}^{\alpha}$ with
the
$\lambda$-open topology is a semitopological group
(paratopological group, topological group, topological vector
space and other algebraic structures) under the usual operations
of addition and multiplication (and multiplication by scalars).
For example, if
$X=[0,\omega_1)$ and
$\lambda$ is a family of
$C$-compact subsets of
$X$, then
$C_{\lambda}(X,\mathbb{R}^{\omega})$ is a semitopological group
(locally convex topological vector space, topological algebra),
but
$C_{\lambda}(X,\mathbb{R}^{\omega_1})$ is not semitopological
group.
Ключевые слова:
set-open topology, topological group,
$C$-compact subset, semitopological group, paratopological group, topological vector space,
$C_{\alpha}$-compact subset, topological algebra.
УДК:
515.122.55,
515.122.4,
512.546.1
MSC: 37F20,
26A03,
03E75,
54C35 Поступила 22 октября 2017 г., опубликована
13 декабря 2017 г.
Язык публикации: английский
DOI:
10.17377/semi.2017.14.123