RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2017, том 14, страницы 1440–1446 (Mi semr882)

Эта публикация цитируется в 2 статьях

Геометрия и топология

Group structures of a function spaces with the set-open topology

A. V. Osipovabc

a Krasovskii Institute of Mathematics and Mechanics, 16 S.Kovalevskoy str., 620990, Yekaterinburg, Russia
b Ural Federal University, 19 Mira str., 620002, Yekaterinburg, Russia
c Ural State University of Economics, 62, 8th of March str., 620219, Yekaterinburg, Russia

Аннотация: In this paper, we find at the properties of the family $\lambda$ which imply that the space $C(X,\mathbb{R}^{\alpha})$ — the set of all continuous mappings on a Tychonoff space $X$ to the space $\mathbb{R}^{\alpha}$ with the $\lambda$-open topology is a semitopological group (paratopological group, topological group, topological vector space and other algebraic structures) under the usual operations of addition and multiplication (and multiplication by scalars). For example, if $X=[0,\omega_1)$ and $\lambda$ is a family of $C$-compact subsets of $X$, then $C_{\lambda}(X,\mathbb{R}^{\omega})$ is a semitopological group (locally convex topological vector space, topological algebra), but $C_{\lambda}(X,\mathbb{R}^{\omega_1})$ is not semitopological group.

Ключевые слова: set-open topology, topological group, $C$-compact subset, semitopological group, paratopological group, topological vector space, $C_{\alpha}$-compact subset, topological algebra.

УДК: 515.122.55, 515.122.4, 512.546.1

MSC: 37F20, 26A03, 03E75, 54C35

Поступила 22 октября 2017 г., опубликована 13 декабря 2017 г.

Язык публикации: английский

DOI: 10.17377/semi.2017.14.123



Реферативные базы данных:


© МИАН, 2024