Аннотация:
In the paper we prove that if $G$ is a
finite almost simple group with socle isomorphic to $G_2(3)$,
$G_2(4)$, $F_4(2)$, ${}^2E_6(2)$, $Sz(8)$, then for every nilpotent
subgroups $A,B$ of $G$ there exists an element $g\in G$ such that
$A\cap B^g=1$, except the case $G=Aut(F_4(2))$, and $A,B$ are
$2$-groups.
Ключевые слова:finite group, simple group, nilpotent subgroup, intersection of subgroups.