RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2018, том 15, страницы 115–134 (Mi semr904)

Вычислительная математика

Многомасштабное моделирование процесса просачивания однофазного флюида в пористых средах

С. И. Марковab, Н. Б. Иткинаa

a Novosibirsk State Technical University, Prospekt K. Marksa, 20, 630073, Novosibirsk, Russia
b Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Koptug ave. 3, 630090, Novosibirsk, Russia

Аннотация: In the paper, we propose a modern mathematical method for solving seepage problems in multiscale porous media. We present a discrete variational formulation for a Discontinuous Galerkin Method (DG-method) with special stabilizing parameters. The DG-method is used for solving the single-phase fluid flow problem with full permeability tensor of the second rank in the macrolevel medium. A problem of homogenizing the heterogeneous mesolevel medium with non-periodic inclusions is considered. An algorithm for solving an inverse data problem is based on the Fletcher-Reeves method and the local Newton method. Mathematical modeling results of solving the seepage problem in the anisotropic heterogeneous and efficient media are given. A comparative analysis of the obtained mathematical modeling results is carried out.

Ключевые слова: seepage problem, Discontinuous Galerkin Method, permeability tensor, homogenization.

УДК: 519.633.2

MSC: 76S05

Поступила 6 мая 2017 г., опубликована 12 февраля 2018 г.

DOI: 10.17377/semi.2018.15.013



Реферативные базы данных:


© МИАН, 2024