RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2018, том 15, страницы 1174–1181 (Mi semr986)

Эта публикация цитируется в 2 статьях

Дискретная математика и математическая кибернетика

All tight descriptions of $3$-paths in plane graphs with girth at least $9$

V. A. Aksenova, O. V. Borodinb, A. O. Ivanovac

a Novosibirsk National Research University, str. Pirogova, 1, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
c Ammosov North-Eastern Federal University, str. Kulakovskogo, 48, 677000, Yakutsk, Russia

Аннотация: Lebesgue (1940) proved that every plane graph with minimum degree $\delta$ at least $3$ and girth $g$ at least $5$ has a path on three vertices ($3$-path) of degree $3$ each. A description is tight if no its parameter can be strengthened, and no triplet dropped.
Borodin et al. (2013) gave a tight description of $3$-paths in plane graphs with $\delta\ge3$ and $g\ge3$, and another tight description was given by Borodin, Ivanova and Kostochka in 2017.
Borodin and Ivanova (2015) gave seven tight descriptions of $3$-paths when $\delta\ge3$ and $g\ge4$. Furthermore, they proved that this set of tight descriptions is complete, which was a result of a new type in the structural theory of plane graphs. Also, they characterized (2018) all one-term tight descriptions if $\delta\ge3$ and $g\ge3$. The problem of producing all tight descriptions for $g\ge3$ remains widely open even for $\delta\ge3$.
Recently, several tight descriptions of $3$-paths were obtained for plane graphs with $\delta=2$ and $g\ge4$ by Jendrol', Maceková, Montassier, and Soták, four of which descriptions are for $g\ge9$.
In this paper, we prove ten new tight descriptions of $3$-paths for $\delta=2$ and $g\ge9$ and show that no other tight descriptions exist.

Ключевые слова: plane graph, structure properties, tight description, $3$-path, minimum degree, girth.

УДК: 519.172.2

MSC: 05C75

Поступила 5 сентября 2018 г., опубликована 16 октября 2018 г.

Язык публикации: английский

DOI: 10.17377/semi.2018.15.095



Реферативные базы данных:


© МИАН, 2024