RUS  ENG
Полная версия
ЖУРНАЛЫ // Сибирские электронные математические известия // Архив

Сиб. электрон. матем. изв., 2018, том 15, страницы 1227–1236 (Mi semr990)

Геометрия и топология

Rigidity of powers and Kosniowski's conjecture

Z. Lüa, O. R. Musinbc

a School of Mathematical Sciences, Fudan University, 200433, Shanghai, P.R. China
b IITP RAS, Russia
c University of Texas Rio Grande Valley, School of Mathematical and Statistical Sciences, One West University Boulevard, Brownsville, TX, 78520, USA

Аннотация: In this paper we state some problems on rigidity of powers in terms of complex analysis and number-theoretic abstraction, which has a strong topological background for the rigid Hirzebruch genera and Kosniowski's conjecture of unitary circle actions. However, our statements of these problems are elementary enough and do not require any knowledge of algebraic topology. We shall give the solutions of these problems for some particular cases. As a consequence, we obtain that Kosniowski's conjecture holds in the case of dimension $\leq 10$ or equal to $14$.

Ключевые слова: Rigidity of powers, circle action, fixed points, Kosniowski's conjecture, multiplicative genus.

УДК: 515.14

MSC: 55N22, 57R77

Поступила 19 февраля 2017 г., опубликована 22 октября 2018 г.

Язык публикации: английский

DOI: 10.17377/semi.2018.15.099



Реферативные базы данных:


© МИАН, 2024