Эта публикация цитируется в
1 статье
Vertex Algebras $\mathcal{W}(p)^{A_m}$ and $\mathcal{W}(p)^{D_m}$ and Constant Term Identities
Dražen Adamovića,
Xianzu Linb,
Antun Milasc a Department of Mathematics, University of Zagreb, Bijenicka 30, 10000 Zagreb, Croatia
b College of Mathematics and Computer Science, Fujian Normal University, Fuzhou, 350108, China
c Department of Mathematics and Statistics, SUNY-Albany, 1400 Washington Avenue, Albany 12222,USA
Аннотация:
We consider
$AD$-type orbifolds of the triplet vertex algebras
$\mathcal{W}(p)$ extending the well-known
$c=1$ orbifolds of lattice vertex algebras. We study the structure of Zhu's algebras
$A(\mathcal{W}(p)^{A_m})$ and
$A(\mathcal{W}(p)^{D_m})$, where
$A_m$ and
$D_m$ are cyclic and dihedral groups, respectively. A combinatorial algorithm for classification of irreducible
$\mathcal{W}(p)^\Gamma$-modules is developed, which relies on a family of constant term identities and properties of certain polynomials based on constant terms. All these properties can be checked for small values of
$m$ and
$p$ with a computer software. As a result, we argue that if certain constant term properties hold, the irreducible modules constructed in [
Commun. Contemp. Math. 15 (2013), 1350028, 30 pages;
Internat. J. Math. 25 (2014), 1450001, 34 pages] provide a complete list of irreducible
$\mathcal{W}(p)^{A_m}$ and
$\mathcal{W}(p)^{D_m}$-modules. This paper is a continuation of our previous work on the
$ADE$ subalgebras of the triplet vertex algebra
$\mathcal{W}(p)$.
Ключевые слова:
$C_{2}$-cofiniteness, triplet vertex algebra, orbifold subalgebra, constant term identities.
MSC: 17B69 Поступила: 3 октября 2014 г.; в окончательном варианте
25 февраля 2015 г.; опубликована
5 марта 2015 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2015.019