Аннотация:
Multisummation provides a transparent description of Stokes matrices which is reviewed here together with some applications. Examples of moduli spaces for Stokes matrices are computed and discussed. A moduli space for a third Painlevé equation is made explicit. It is shown that the monodromy identity, relating the topological monodromy and Stokes matrices, is useful for some quantum differential equations and for confluent generalized hypergeometric equations.
Ключевые слова:Stokes matrices; moduli space for linear connections; quantum differential equations; Painlevé equations.