RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 042, 49 стр. (Mi sigma1023)

Эта публикация цитируется в 20 статьях

Simplex and Polygon Equations

Aristophanes Dimakisa, Folkert Müller-Hoissenb

a Department of Financial and Management Engineering, University of the Aegean, 82100 Chios, Greece
b Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany

Аннотация: It is shown that higher Bruhat orders admit a decomposition into a higher Tamari order, the corresponding dual Tamari order, and a “mixed order”. We describe simplex equations (including the Yang–Baxter equation) as realizations of higher Bruhat orders. Correspondingly, a family of “polygon equations” realizes higher Tamari orders. They generalize the well-known pentagon equation. The structure of simplex and polygon equations is visualized in terms of deformations of maximal chains in posets forming 1-skeletons of polyhedra. The decomposition of higher Bruhat orders induces a reduction of the $N$-simplex equation to the $(N+1)$-gon equation, its dual, and a compatibility equation.

Ключевые слова: higher Bruhat order; higher Tamari order; pentagon equation; simplex equation.

MSC: 06A06; 06A07; 52Bxx; 82B23

Поступила: 23 октября 2014 г.; в окончательном варианте 26 мая 2015 г.; опубликована 5 июня 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.042



Реферативные базы данных:
ArXiv: 1409.7855


© МИАН, 2024