RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 059, 47 стр. (Mi sigma1040)

Эта публикация цитируется в 2 статьях

A Perturbation of the Dunkl Harmonic Oscillator on the Line

Jesús A. Álvarez Lópeza, Manuel Calazab, Carlos Francoa

a Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
b Laboratorio de Investigación 2 and Rheumatology Unit, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain

Аннотация: Let $J_\sigma$ be the Dunkl harmonic oscillator on ${\mathbb{R}}$ ($\sigma>-1/2$). For $0<u<1$ and $\xi>0$, it is proved that, if $\sigma>u-1/2$, then the operator $U=J_\sigma+\xi|x|^{-2u}$, with appropriate domain, is essentially self-adjoint in $L^2({\mathbb{R}},|x|^{2\sigma} dx)$, the Schwartz space ${\mathcal{S}}$ is a core of $\overline U^{1/2}$, and $\overline U$ has a discrete spectrum, which is estimated in terms of the spectrum of $\overline{J_\sigma}$. A generalization $J_{\sigma,\tau}$ of $J_\sigma$ is also considered by taking different parameters $\sigma$ and $\tau$ on even and odd functions. Then extensions of the above result are proved for $J_{\sigma,\tau}$, where the perturbation has an additional term involving, either the factor $x^{-1}$ on odd functions, or the factor $x$ on even functions. Versions of these results on ${\mathbb{R}}_+$ are derived.

Ключевые слова: Dunkl harmonic oscillator; perturbation theory.

MSC: 47A55; 47B25; 33C45

Поступила: 19 февраля 2015 г.; в окончательном варианте 20 июля 2015 г.; опубликована 25 июля 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.059



Реферативные базы данных:
ArXiv: 1412.4655


© МИАН, 2024