RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 064, 18 стр. (Mi sigma1045)

Эта публикация цитируется в 22 статьях

${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators

Stanislav Pakuliakabc, Eric Ragoucyd, Nikita A. Slavnove

a Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow reg., Russia
b Institute of Theoretical & Experimental Physics, 117259 Moscow, Russia
c Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow reg., Russia
d Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, France
e Steklov Mathematical Institute, Moscow, Russia

Аннотация: We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the ${\rm GL}(3)$-invariant $R$-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense.

Ключевые слова: Bethe ansatz; quantum affine algebras, composite models.

MSC: 17B37; 81R50

Поступила: 18 февраля 2015 г.; в окончательном варианте 22 июля 2015 г.; опубликована 31 июля 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.064



Реферативные базы данных:
ArXiv: 1502.01966


© МИАН, 2024