RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 077, 10 стр. (Mi sigma1058)

Эта публикация цитируется в 1 статье

Moments and Legendre–Fourier Series for Measures Supported on Curves

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics, University of Toulouse, 7 Avenue du Colonel Roche, BP 54 200, 31031 Toulouse Cédex 4, France

Аннотация: Some important problems (e.g., in optimal transport and optimal control) have a relaxed (or weak) formulation in a space of appropriate measures which is much easier to solve. However, an optimal solution $\mu$ of the latter solves the former if and only if the measure $\mu$ is supported on a “trajectory” $\{(t,x(t))\colon t\in [0,T]\}$ for some measurable function $x(t)$. We provide necessary and sufficient conditions on moments $(\gamma_{ij})$ of a measure $d\mu(x,t)$ on $[0,1]^2$ to ensure that $\mu$ is supported on a trajectory $\{(t,x(t))\colon t\in [0,1]\}$. Those conditions are stated in terms of Legendre–Fourier coefficients ${\mathbf f}_j=({\mathbf f}_j(i))$ associated with some functions $f_j\colon [0,1]\to {\mathbb R}$, $j=1,\ldots$, where each ${\mathbf f}_j$ is obtained from the moments $\gamma_{ji}$, $i=0,1,\ldots$, of $\mu$.

Ключевые слова: moment problem; Legendre polynomials; Legendre–Fourier series.

MSC: 42C05; 42C10; 42A16; 44A60

Поступила: 28 августа 2015 г.; в окончательном варианте 26 сентября 2015 г.; опубликована 29 сентября 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.077



Реферативные базы данных:
ArXiv: 1508.06884


© МИАН, 2024