RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 084, 21 стр. (Mi sigma1065)

Эта публикация цитируется в 5 статьях

Fast Basins and Branched Fractal Manifolds of Attractors of Iterated Function Systems

Michael F. Barnsleya, Andrew Vinceb

a Mathematical Sciences Institute, Australian National University, Australia
b Department of Mathematics, Univesity of Florida, USA

Аннотация: The fast basin of an attractor of an iterated function system (IFS) is the set of points in the domain of the IFS whose orbits under the associated semigroup intersect the attractor. Fast basins can have non-integer dimension and comprise a class of deterministic fractal sets. The relationship between the basin and the fast basin of a point-fibred attractor is analyzed. To better understand the topology and geometry of fast basins, and because of analogies with analytic continuation, branched fractal manifolds are introduced. A branched fractal manifold is a metric space constructed from the extended code space of a point-fibred attractor, by identifying some addresses. Typically, a branched fractal manifold is a union of a nondenumerable collection of nonhomeomorphic objects, isometric copies of generalized fractal blowups of the attractor.

Ключевые слова: iterated function system; fast basins; fractal continuation; fractal manifold.

MSC: 05B45; 37B50; 52B50

Поступила: 23 июня 2015 г.; в окончательном варианте 13 октября 2015 г.; опубликована 16 октября 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.084



Реферативные базы данных:
ArXiv: 1308.3819


© МИАН, 2024