RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 087, 22 стр. (Mi sigma1068)

Эта публикация цитируется в 1 статье

Bispectrality of $N$-Component KP Wave Functions: A Study in Non-Commutativity

Alex Kasman

Department of Mathematics, College of Charleston, USA

Аннотация: A wave function of the $N$-component KP Hierarchy with continuous flows determined by an invertible matrix $H$ is constructed from the choice of an $MN$-dimensional space of finitely-supported vector distributions. This wave function is shown to be an eigenfunction for a ring of matrix differential operators in $x$ having eigenvalues that are matrix functions of the spectral parameter $z$. If the space of distributions is invariant under left multiplication by $H$, then a matrix coefficient differential-translation operator in $z$ is shown to share this eigenfunction and have an eigenvalue that is a matrix function of $x$. This paper not only generates new examples of bispectral operators, it also explores the consequences of non-commutativity for techniques and objects used in previous investigations.

Ключевые слова: bispectrality; multi-component KP hierarchy; Darboux transformations; non-commutative solitons.

MSC: 34L05; 16S32; 37K10

Поступила: 13 мая 2015 г.; в окончательном варианте 28 октября 2015 г.; опубликована 1 ноября 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.087



Реферативные базы данных:
ArXiv: 1505.02833


© МИАН, 2024