RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 089, 11 стр. (Mi sigma1070)

Эта публикация цитируется в 2 статьях

On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems

Manuele Santoprete

Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada

Аннотация: Bi-Hamiltonian structures are of great importance in the theory of integrable Hamiltonian systems. The notion of compatibility of symplectic structures is a key aspect of bi-Hamiltonian systems. Because of this, a few different notions of compatibility have been introduced. In this paper we show that, under some additional assumptions, compatibility in the sense of Magri implies a notion of compatibility due to Fassò and Ratiu, that we dub bi-affine compatibility. We present two proofs of this fact. The first one uses the uniqueness of the connection parallelizing all the Hamiltonian vector fields tangent to the leaves of a Lagrangian foliation. The second proof uses Darboux–Nijenhuis coordinates and symplectic connections.

Ключевые слова: bi-Hamiltonian systems; Lagrangian foliation; bott connection; symplectic connections.

MSC: 70H06; 70G45; 37K10

Поступила: 30 июня 2015 г.; в окончательном варианте 3 ноября 2015 г.; опубликована 7 ноября 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.089



Реферативные базы данных:
ArXiv: 1506.08675


© МИАН, 2024