RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2015, том 11, 096, 23 стр. (Mi sigma1077)

Эта публикация цитируется в 7 статьях

Harmonic Oscillator on the $\mathrm{SO}(2,2)$ Hyperboloid

Davit R. Petrosyana, George S. Pogosyanbc

a Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
b Departamento de Matematicas, CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
c International Center for Advanced Studies, Yerevan State University, A. Manoogian 1, Yerevan, 0025, Armenia

Аннотация: In the present work the classical problem of harmonic oscillator in the hyperbolic space $H_2^2$: $z_0^2+z_1^2-z_2^2-z_3^2=R^2$ has been completely solved in framework of Hamilton–Jacobi equation. We have shown that the harmonic oscillator on $H_2^2$, as in the other spaces with constant curvature, is exactly solvable and belongs to the class of maximally superintegrable system. We have proved that all the bounded classical trajectories are closed and periodic. The orbits of motion are ellipses or circles for bounded motion and ultraellipses or equidistant curve for infinite ones.

Ключевые слова: superintegrable systems; harmonic oscillator; hyperbolic space; Hamilton–Jacobi equation.

MSC: 22E60; 37J15; 37J50; 70H20

Поступила: 24 апреля 2015 г.; в окончательном варианте 20 ноября 2015 г.; опубликована 25 ноября 2015 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2015.096



Реферативные базы данных:
ArXiv: 1504.06228


© МИАН, 2024