Эта публикация цитируется в
10 статьях
Orthogonal vs. Non-Orthogonal Reducibility of Matrix-Valued Measures
Erik Koelinka,
Pablo Románb a IMAPP, Radboud Universiteit, Heyendaalseweg 135, 6525 GL Nijmegen, The Netherlands
b CIEM, FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n Ciudad Universitaria, Córdoba, Argentina
Аннотация:
A matrix-valued measure
$\Theta$ reduces to measures of smaller size if there exists a constant invertible matrix
$M$ such that
$M\Theta M^*$ is block diagonal. Equivalently, the real vector space
$\mathcal{A}$ of all matrices
$T$ such that
$T\Theta(X)=\Theta(X) T^*$ for any Borel set
$X$ is non-trivial. If the subspace
$A_h$ of self-adjoints elements in the commutant algebra
$A$ of
$\Theta$ is non-trivial, then
$\Theta$ is reducible via a unitary matrix. In this paper we prove that
$\mathcal{A}$ is
$*$-invariant if and only if
$A_h=\mathcal{A}$, i.e., every reduction of
$\Theta$ can be performed via a unitary matrix. The motivation for this paper comes from families of matrix-valued polynomials related to the group
$\mathrm{SU(2)}\times \mathrm{SU(2)}$ and its quantum analogue. In both cases the commutant algebra
$A=A_h\oplus iA_h$ is of dimension two and the matrix-valued measures reduce unitarily into a
$2\times 2$ block diagonal matrix. Here we show that there is no further non-unitary reduction.
Ключевые слова:
matrix-valued measures; reducibility; matrix-valued orthogonal polynomials.
MSC: 33D45;
42C05 Поступила: 23 сентября 2015 г.; в окончательном варианте
21 января 2016 г.; опубликована
23 января 2016 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2016.008