RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 010, 16 стр. (Mi sigma1092)

Эта публикация цитируется в 4 статьях

Quasi-Bi-Hamiltonian Structures of the 2-Dimensional Kepler Problem

Jose F. Cariñena, Manuel F. Rañada

Departamento de Física Teórica and IUMA, Universidad de Zaragoza, 50009 Zaragoza, Spain

Аннотация: The existence of quasi-bi-Hamiltonian structures for the Kepler problem is studied. We first relate the superintegrability of the system with the existence of two complex functions endowed with very interesting Poisson bracket properties and then we prove the existence of a quasi-bi-Hamiltonian structure by making use of these two functions. The paper can be considered as divided in two parts. In the first part a quasi-bi-Hamiltonian structure is obtained by making use of polar coordinates and in the second part a new quasi-bi-Hamiltonian structure is obtained by making use of the separability of the system in parabolic coordinates.

Ключевые слова: Kepler problem; superintegrability; complex structures; bi-Hamiltonian structures; quasi-bi-Hamiltonian structures.

MSC: 37J15; 37J35; 70H06; 70H33

Поступила: 29 сентября 2015 г.; в окончательном варианте 25 января 2016 г.; опубликована 27 января 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.010



Реферативные базы данных:
ArXiv: 1509.07493


© МИАН, 2024