Аннотация:
For $G$ a finite subgroup of ${\rm SL}(3,{\mathbb C})$ acting freely on ${\mathbb C}^3{\setminus} \{0\}$ a crepant resolution of the Calabi–Yau orbifold ${\mathbb C}^3\!/G$ always exists and has the geometry of an ALE non-compact manifold. We show that the tautological bundles on these crepant resolutions admit rigid Hermitian–Yang–Mills connections. For this we use analytical information extracted from the derived category McKay correspondence of Bridgeland, King, and Reid [J. Amer. Math. Soc.14 (2001), 535–554]. As a consequence we rederive multiplicative cohomological identities on the crepant resolution using the Atiyah–Patodi–Singer index theorem. These results are dimension three analogues of Kronheimer and Nakajima's results [Math. Ann.288 (1990), 263–307] in dimension two.