RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2005, том 1, 011, 16 стр. (Mi sigma11)

Эта публикация цитируется в 22 статьях

Connections Between Symmetries and Conservation Laws

George Bluman

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T1Z2

Аннотация: This paper presents recent work on connections between symmetries and conservation laws. After reviewing Noether's theorem and its limitations, we present the Direct Construction Method to show how to find directly the conservation laws for any given system of differential equations. This method yields the multipliers for conservation laws as well as an integral formula for corresponding conserved densities. The action of a symmetry (discrete or continuous) on a conservation law yields conservation laws. Conservation laws yield non-locally related systems that, in turn, can yield nonlocal symmetries and in addition be useful for the application of other mathematical methods. From its admitted symmetries or multipliers for conservation laws, one can determine whether or not a given system of differential equations can be linearized by an invertible transformation.

Ключевые слова: conservation laws; linearization; nonlocal symmetries; Noether's theorem.

MSC: 58J70; 58J72; 70G65; 70G75; 70H03; 70H33; 70S10

Поступила: 29 июля 2005 г.; в окончательном варианте 22 октября 2005 г.; опубликована 26 октября 2005 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2005.011



Реферативные базы данных:
ArXiv: math-ph/0511035


© МИАН, 2024