RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 018, 14 стр. (Mi sigma1100)

Эта публикация цитируется в 9 статьях

A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries

Paula Balseiroa, Nicola Sansonettob

a Universidade Federal Fluminense, Instituto de Matemática, Rua Mario Santos Braga S/N, 24020-140, Niteroi, Rio de Janeiro, Brazil
b Università degli Studi di Padova, Dipartimento di Matematica, via Trieste 64, 35121 Padova, Italy

Аннотация: We study the existence of first integrals in nonholonomic systems with symmetry. First we define the concept of $\mathcal{M}$-cotangent lift of a vector field on a manifold $Q$ in order to unify the works [Balseiro P., Arch. Ration. Mech. Anal. 214 (2014), 453–501, arXiv:1301.1091], [Fassò F., Ramos A., Sansonetto N., Regul. Chaotic Dyn. 12 (2007), 579–588], and [Fassò F., Giacobbe A., Sansonetto N., Rep. Math. Phys. 62 (2008), 345–367]. Second, we study gauge symmetries and gauge momenta, in the cases in which there are the symmetries that satisfy the so-called vertical symmetry condition. Under such condition we can predict the number of linearly independent first integrals (that are gauge momenta). We illustrate the theory with two examples.

Ключевые слова: nonholonomic systems; Lie group symmetries; first integrals; gauge symmetries and gauge momenta.

MSC: 70F25; 70H33; 53D20

Поступила: 29 октября 2015 г.; в окончательном варианте 12 февраля 2016 г.; опубликована 21 февраля 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.018



Реферативные базы данных:
ArXiv: 1510.08314


© МИАН, 2024