RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 022, 14 стр. (Mi sigma1104)

Эта публикация цитируется в 9 статьях

Hierarchies of Manakov–Santini Type by Means of Rota–Baxter and Other Identities

Błazej M. Szablikowski

Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznán, Poland

Аннотация: The Lax–Sato approach to the hierarchies of Manakov–Santini type is formalized in order to extend it to a more general class of integrable systems. For this purpose some linear operators are introduced, which must satisfy some integrability conditions, one of them is the Rota–Baxter identity. The theory is illustrated by means of the algebra of Laurent series, the related hierarchies are classified and examples, also new, of Manakov–Santini type systems are constructed, including those that are related to the dispersionless modified Kadomtsev–Petviashvili equation and so called dispersionless $r$-th systems.

Ключевые слова: Manakov–Santini hierarchy; Rota–Baxter identity; classical $r$-matrix formalism; generalized Lax hierarchies; integrable $(2+1)$-dimensional systems.

MSC: 37K10; 37K30

Поступила: 11 января 2016 г.; в окончательном варианте 22 февраля 2016 г.; опубликована 27 февраля 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.022



Реферативные базы данных:
ArXiv: 1512.05817


© МИАН, 2024