Эта публикация цитируется в
5 статьях
Flat $(2,3,5)$-Distributions and Chazy's Equations
Matthew Randall Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Аннотация:
In the geometry of generic 2-plane fields on 5-manifolds, the local equivalence problem was solved by Cartan who also constructed the fundamental curvature invariant. For generic 2-plane fields or
$(2,3,5)$-distributions determined by a single function of the form
$F(q)$, the vanishing condition for the curvature invariant is given by a 6
$^{\rm th}$ order nonlinear ODE. Furthermore, An and Nurowski showed that this ODE is the Legendre transform of the 7
$^{\rm th}$ order nonlinear ODE described in Dunajski and Sokolov. We show that the 6
$^{\rm th}$ order ODE can be reduced to a 3
$^{\rm rd}$ order nonlinear ODE that is a generalised Chazy equation. The 7
$^{\rm th}$ order ODE can similarly be reduced to another generalised Chazy equation, which has its Chazy parameter given by the reciprocal of the former. As a consequence of solving the related generalised Chazy equations, we obtain additional examples of flat
$(2,3,5)$-distributions not of the form
$F(q)=q^m$. We also give 4-dimensional split signature metrics where their twistor distributions via the An–Nurowski construction have split
$G_2$ as their group of symmetries.
Ключевые слова:
generic rank two distribution in dimension five; conformal geometry; Chazy's equations.
MSC: 58A30;
53A30;
34A05;
34A34 Поступила: 23 сентября 2015 г.; в окончательном варианте
14 марта 2016 г.; опубликована
18 марта 2016 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2016.029