RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 029, 28 стр. (Mi sigma1111)

Эта публикация цитируется в 5 статьях

Flat $(2,3,5)$-Distributions and Chazy's Equations

Matthew Randall

Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

Аннотация: In the geometry of generic 2-plane fields on 5-manifolds, the local equivalence problem was solved by Cartan who also constructed the fundamental curvature invariant. For generic 2-plane fields or $(2,3,5)$-distributions determined by a single function of the form $F(q)$, the vanishing condition for the curvature invariant is given by a 6$^{\rm th}$ order nonlinear ODE. Furthermore, An and Nurowski showed that this ODE is the Legendre transform of the 7$^{\rm th}$ order nonlinear ODE described in Dunajski and Sokolov. We show that the 6$^{\rm th}$ order ODE can be reduced to a 3$^{\rm rd}$ order nonlinear ODE that is a generalised Chazy equation. The 7$^{\rm th}$ order ODE can similarly be reduced to another generalised Chazy equation, which has its Chazy parameter given by the reciprocal of the former. As a consequence of solving the related generalised Chazy equations, we obtain additional examples of flat $(2,3,5)$-distributions not of the form $F(q)=q^m$. We also give 4-dimensional split signature metrics where their twistor distributions via the An–Nurowski construction have split $G_2$ as their group of symmetries.

Ключевые слова: generic rank two distribution in dimension five; conformal geometry; Chazy's equations.

MSC: 58A30; 53A30; 34A05; 34A34

Поступила: 23 сентября 2015 г.; в окончательном варианте 14 марта 2016 г.; опубликована 18 марта 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.029



Реферативные базы данных:
ArXiv: 1506.02473


© МИАН, 2024