RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 032, 35 стр. (Mi sigma1114)

Эта публикация цитируется в 4 статьях

Meta-Symplectic Geometry of $3^{\mathrm{rd}}$ Order Monge–Ampère Equations and their Characteristics

Gianni Mannoa, Giovanni Morenob

a Dipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland

Аннотация: This paper is a natural companion of [Alekseevsky D. V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497–524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge–Ampère equations, by using the so-called “meta-symplectic structure” associated with the 8D prolongation $M^{(1)}$ of a 5D contact manifold $M$. We write down a geometric definition of a third-order Monge–Ampère equation in terms of a (class of) differential two-form on $M^{(1)}$. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge–Ampère equations, herewith called of Goursat type.

Ключевые слова: Monge–Ampère equations; prolongations of contact manifolds; characteristics of PDEs; distributions on manifolds; third-order PDEs.

MSC: 53D10; 35A30; 58A30; 14M15

Поступила: 29 октября 2015 г.; в окончательном варианте 16 марта 2016 г.; опубликована 26 марта 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.032



Реферативные базы данных:
ArXiv: 1403.3521


© МИАН, 2024