RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 033, 27 стр. (Mi sigma1115)

Эта публикация цитируется в 3 статьях

Orthogonality Measure on the Torus for Vector-Valued Jack Polynomials

Charles F. Dunkl

Department of Mathematics, University of Virginia, PO Box 400137, Charlottesville VA 22904-4137, USA

Аннотация: For each irreducible module of the symmetric group on $N$ objects there is a set of parametrized nonsymmetric Jack polynomials in $N$ variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to certain Hermitian forms. These polynomials were studied by the author and J.-G. Luque using a Yang–Baxter graph technique. This paper constructs a matrix-valued measure on the $N$-torus for which the polynomials are mutually orthogonal. The construction uses Fourier analysis techniques. Recursion relations for the Fourier–Stieltjes coefficients of the measure are established, and used to identify parameter values for which the construction fails. It is shown that the absolutely continuous part of the measure satisfies a first-order system of differential equations.

Ключевые слова: nonsymmetric Jack polynomials; Fourier–Stieltjes coefficients; matrix-valued measure; symmetric group modules.

MSC: 33C52; 42B10; 20C30; 46G10; 35F35

Поступила: 26 ноября 2015 г.; в окончательном варианте 23 марта 2016 г.; опубликована 27 марта 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.033



Реферативные базы данных:
ArXiv: 1511.06721


© МИАН, 2024