RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 084, 20 стр. (Mi sigma112)

Эта публикация цитируется в 38 статьях

$\mathcal R$-Matrix and Baxter $\mathcal Q$-Operators for the Noncompact $\mathrm{SL}(N,\mathbb C)$ Invariant Spin Chain

Sergey É Derkachova, Alexander N. Manashovbc

a St.-Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fontanka 27, 191023 St.-Petersburg, Russia
b Department of Theoretical Physics, Sankt-Petersburg University, St.-Petersburg, Russia
c Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

Аннотация: The problem of constructing the $SL(N,\mathbb C)$ invariant solutions to the Yang–Baxter equation is considered. The solutions ($\mathcal R$-operators) for arbitrarily principal series representations of $\mathrm{SL}(N,\mathbb C)$ are obtained in an explicit form. We construct the commutative family of the operators $\mathcal Q_k(u)$ which can be identified with the Baxter operators for the noncompact $\mathrm{SL}(N,\mathbb C)$ spin magnet.

Ключевые слова: Yang–Baxter equation; Baxter operator.

MSC: 82B23; 82B20

Поступила: 30 октября 2006 г.; опубликована 2 декабря 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.084



Реферативные базы данных:
ArXiv: nlin.SI/0612003


© МИАН, 2024