RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 050, 14 стр. (Mi sigma1132)

Эта публикация цитируется в 5 статьях

Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials

Emil Horozovab

a Institute of Mathematics and Informatics, Bulg. Acad. of Sci., Acad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria
b Department of Mathematics and Informatics, Sofia University, 5 J. Bourchier Blvd., Sofia 1126, Bulgaria

Аннотация: We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.

Ключевые слова: vector orthogonal polynomials; finite recurrence relations; bispectral problem; Bochner theorem.

MSC: 34L20; 30C15; 33E05

Поступила: 26 января 2016 г.; в окончательном варианте 12 мая 2016 г.; опубликована 19 мая 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.050



Реферативные базы данных:
ArXiv: 1512.03898


© МИАН, 2024