Singular Instantons and Painlevé VI
Richard Muñiz Manasliski Centro de Matemática, Facultad de Ciencias,
Iguá 4225 esq. Mataojo C.P. 11400, Montevideo, Uruguay
Аннотация:
We consider a two parameter family of instantons, which is studied in [Sadun L.,
Comm. Math. Phys. 163 (1994), 257–291], invariant under the irreducible action of
$\mathrm{SU}_2$ on
$S^4$, but which are not globally defined. We will see that these instantons produce solutions to a one parameter family of Painlevé VI equations (
$\mathrm{P_{VI}}$) and we will give an explicit expression of the map between instantons and solutions to
$\mathrm{P_{VI}}$. The solutions are algebraic only for that values of the parameters which correspond to the instantons that can be extended to all of
$S^4$. This work is a generalization of [Muñiz Manasliski R.,
Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 215–222] and [Muñiz Manasliski R.,
J. Geom. Phys. 59 (2009), 1036–1047, arXiv:
1602.07221], where instantons without singularities are studied.
Ключевые слова:
twistor theory; Yang–Mills instantons; isomonodromic deformations.
MSC: 34M55;
53C07;
53C28 Поступила: 26 февраля 2016 г.; в окончательном варианте
9 июня 2016 г.; опубликована
15 июня 2016 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2016.057