Аннотация:
Third-order ordinary differential equations with Lie symmetry algebras isomorphic to the nonsolvable algebra $\mathfrak{sl}(2,\mathbb{R})$ admit solvable structures. These solvable structures can be constructed by using the basis elements of these algebras. Once the solvable structures are known, the given equation can be integrated by quadratures as in the case of solvable symmetry algebras.