RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 086, 21 стр. (Mi sigma1168)

Эта публикация цитируется в 3 статьях

On Jacobi Inversion Formulae for Telescopic Curves

Takanori Ayano

Osaka City University, Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan

Аннотация: For a hyperelliptic curve of genus $g$, it is well known that the symmetric products of $g$ points on the curve are expressed in terms of their Abel–Jacobi image by the hyperelliptic sigma function (Jacobi inversion formulae). Matsutani and Previato gave a natural generalization of the formulae to the more general algebraic curves defined by $y^r=f(x)$, which are special cases of $(n,s)$ curves, and derived new vanishing properties of the sigma function of the curves $y^r=f(x)$. In this paper we extend the formulae to the telescopic curves proposed by Miura and derive new vanishing properties of the sigma function of telescopic curves. The telescopic curves contain the $(n,s)$ curves as special cases.

Ключевые слова: sigma function; inversion of algebraic integrals; vanishing of sigma function; Riemann surface; telescopic curve.

MSC: 14H42; 14H50; 14H55

Поступила: 6 мая 2016 г.; в окончательном варианте 23 августа 2016 г.; опубликована 27 августа 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.086



Реферативные базы данных:
ArXiv: 1603.09569


© МИАН, 2024