RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 095, 22 стр. (Mi sigma1177)

Эта публикация цитируется в 10 статьях

A Riemann–Hilbert Approach for the Novikov Equation

Anne Boutet de Monvela, Dmitry Shepelskyb, Lech Zielinskic

a Institut de Mathématiques de Jussieu-PRG, Université Paris Diderot, 75205 Paris Cedex 13, France
b Mathematical Division, Institute for Low Temperature Physics, 47 Nauki Avenue, 61103 Kharkiv, Ukraine
c LMPA, Université du Littoral Côte d’Opale, 50 rue F. Buisson, CS 80699, 62228 Calais, France

Аннотация: We develop the inverse scattering transform method for the Novikov equation $u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx}$ considered on the line $x\in(-\infty,\infty)$ in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann–Hilbert (RH) problem, which in this case is a $3\times 3$ matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis–Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081–2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a “modified DP equation”, in analogy with the relationship between the Korteweg–de Vries (KdV) equation and the modified Korteweg–de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.

Ключевые слова: Novikov equation; Degasperis–Procesi equation; Camassa–Holm equation; inverse scattering transform; Riemann–Hilbert problem.

MSC: 35Q53; 37K15; 35Q15; 35B40; 35Q51; 37K40

Поступила: 8 июня 2016 г.; в окончательном варианте 14 сентября 2016 г.; опубликована 24 сентября 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.095



Реферативные базы данных:
ArXiv: 1603.08842


© МИАН, 2024