RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 100, 39 стр. (Mi sigma1182)

Эта публикация цитируется в 5 статьях

Bound State Operators and Wedge-Locality in Integrable Quantum Field Theories

Yoh Tanimotoab

a Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan
b Institut für Theoretische Physik, Göttingen University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Аннотация: We consider scalar two-dimensional quantum field theories with a factorizing $S$-matrix which has poles in the physical strip. In our previous work, we introduced the bound state operators and constructed candidate operators for observables in wedges. Under some additional assumptions on the $S$-matrix, we show that, in order to obtain their strong commutativity, it is enough to prove the essential self-adjointness of the sum of the left and right bound state operators. This essential self-adjointness is shown up to the two-particle component.

Ключевые слова: Haag–Kastler net; integrable models; wedge; von Neumann algebras; Hardy space; self-adjointness.

MSC: 81T05; 81T40; 81U40

Поступила: 19 февраля 2016 г.; в окончательном варианте 10 октября 2016 г.; опубликована 19 октября 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.100



Реферативные базы данных:
ArXiv: 1602.04696


© МИАН, 2024