Аннотация:
We consider the limit $N\to +\infty$ of $N$-body type problems with weak interaction, equal masses and $-\sigma$-homogeneous potential, $0<\sigma<1$. We obtain the integro-differential equation that the motions must satisfy, with limit choreographic solutions corresponding to travelling waves of this equation. Such equation is the Euler–Lagrange equation of a corresponding limiting action functional. Our main result is that the circle is the absolute minimizer of the action functional among zero mean (travelling wave) loops of class $H^1$.