RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 091, 25 стр. (Mi sigma119)

Эта публикация цитируется в 10 статьях

Dynamical $R$ Matrices of Elliptic Quantum Groups and Connection Matrices for the $q$-KZ Equations

Hitoshi Konno

Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8521, Japan

Аннотация: For any affine Lie algebra $\mathfrak g$, we show that any finite dimensional representation of the universal dynamical $R$ matrix $\mathcal R(\lambda)$ of the elliptic quantum group $\mathcal B_{q,\lambda}(\mathfrak g)$ coincides with a corresponding connection matrix for the solutions of the $q$-KZ equation associated with $U_q(\mathfrak g)$. This provides a general connection between $\mathcal B_{q,\lambda}(\mathfrak g)$ and the elliptic face (IRF or SOS) models. In particular, we construct vector representations of $\mathcal R(\lambda)$ for $\mathfrak g=A_n^{(1)}$, $B_n^{(1)}$, $C_n^{(1)}$, $D_n^{(1)}$, and show that they coincide with the face weights derived by Jimbo, Miwa and Okado. We hence confirm the conjecture by Frenkel and Reshetikhin.

Ключевые слова: elliptic quantum group; quasi-Hopf algebra.

MSC: 33D15; 81R50; 82B23

Поступила: 2 октября 2006 г.; в окончательном варианте 28 ноября 2006 г.; опубликована 19 декабря 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.091



Реферативные базы данных:
ArXiv: math.QA/0612558


© МИАН, 2024