RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 110, 50 стр. (Mi sigma1192)

Эта публикация цитируется в 7 статьях

Commutation Relations and Discrete Garnier Systems

Christopher M. Ormeroda, Eric M. Rainsb

a University of Maine, Department of Mathemaitcs & Statistics, 5752 Neville Hall, Room 322, Orono, ME 04469, USA
b California Institute of Technology, Mathematics 253-37, Pasadena, CA 91125, USA

Аннотация: We present four classes of nonlinear systems which may be considered discrete analogues of the Garnier system. These systems arise as discrete isomonodromic deformations of systems of linear difference equations in which the associated Lax matrices are presented in a factored form. A system of discrete isomonodromic deformations is completely determined by commutation relations between the factors. We also reparameterize these systems in terms of the image and kernel vectors at singular points to obtain a separate birational form. A distinguishing feature of this study is the presence of a symmetry condition on the associated linear problems that only appears as a necessary feature of the Lax pairs for the least degenerate discrete Painlevé equations.

Ключевые слова: integrable systems; difference equations; Lax pairs; discrete isomonodromy.

MSC: 39A10; 39A13; 37K15

Поступила: 30 марта 2016 г.; в окончательном варианте 30 октября 2016 г.; опубликована 8 ноября 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.110



Реферативные базы данных:
ArXiv: 1601.06179


© МИАН, 2024