RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2016, том 12, 113, 13 стр. (Mi sigma1195)

Эта публикация цитируется в 9 статьях

On Free Field Realizations of $W(2,2)$-Modules

Dražen Adamovića, Gordan Radoboljab

a Department of Mathematics, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia
b Faculty of Science, University of Split, Rudera Boškovića 33, 21 000 Split, Croatia

Аннотация: The aim of the paper is to study modules for the twisted Heisenberg–Virasoro algebra $\mathcal H$ at level zero as modules for the $W(2,2)$-algebra by using construction from [J. Pure Appl. Algebra 219 (2015), 4322–4342, arXiv:1405.1707]. We prove that the irreducible highest weight ${\mathcal H}$-module is irreducible as $W(2,2)$-module if and only if it has a typical highest weight. Finally, we construct a screening operator acting on the Heisenberg–Virasoro vertex algebra whose kernel is exactly $W(2,2)$ vertex algebra.

Ключевые слова: Heisenberg–Virasoro Lie algebra; vertex algebra; $W(2,2)$ algebra; screening-operators.

MSC: 17B69; 17B67; 17B68; 81R10

Поступила: 9 июня 2016 г.; в окончательном варианте 3 декабря 2016 г.; опубликована 6 декабря 2016 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2016.113



Реферативные базы данных:
ArXiv: 1605.08608


© МИАН, 2024