RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 004, 56 стр. (Mi sigma1204)

Эта публикация цитируется в 7 статьях

The Geometry of Almost Einstein $(2, 3, 5)$ Distributions

Katja Sagerschniga, Travis Willseb

a Politecnico di Torino, Dipartimento di Scienze Matematiche, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Аннотация: We analyze the classic problem of existence of Einstein metrics in a given conformal structure for the class of conformal structures inducedf Nurowski's construction by (oriented) $(2, 3, 5)$ distributions. We characterize in two ways such conformal structures that admit an almost Einstein scale: First, they are precisely the oriented conformal structures $\mathbf{c}$ that are induced by at least two distinct oriented $(2, 3, 5)$ distributions; in this case there is a $1$-parameter family of such distributions that induce $\mathbf{c}$. Second, they are characterized by the existence of a holonomy reduction to $\mathrm{SU}(1, 2)$, $\mathrm{SL}(3, {\mathbb R})$, or a particular semidirect product $\mathrm{SL}(2, {\mathbb R}) \ltimes Q_+$, according to the sign of the Einstein constant of the corresponding metric. Via the curved orbit decomposition formalism such a reduction partitions the underlying manifold into several submanifolds and endows each ith a geometric structure. This establishes novel links between $(2, 3, 5)$ distributions and many other geometries – several classical geometries among them – including: Sasaki–Einstein geometry and its paracomplex and null-complex analogues in dimension $5$; Kähler–Einstein geometry and its paracomplex and null-complex analogues, Fefferman Lorentzian conformal structures, and para-Fefferman neutral conformal structures in dimension $4$; CR geometry and the point geometry of second-order ordinary differential equations in dimension $3$; and projective geometry in dimension $2$. We describe a generalized Fefferman construction that builds from a $4$-dimensional Kähler–Einstein or para-Kähler–Einstein structure a family of $(2, 3, 5)$ distributions that induce the same (Einstein) conformal structure. We exploit some of these links to construct new examples, establishing the existence of nonflat almost Einstein $(2, 3, 5)$ conformal structures for which the Einstein constant is positive and negative.

Ключевые слова: $(2, 3, 5)$ distribution; almost Einstein; conformal geometry; conformal Killing field; CR structure; curved orbit decomposition; Fefferman construction; $\mathrm{G}_2$; holonomy reduction; Kähler–Einstein; Sasaki–Einstein; second-order ordinary differential equation.

MSC: 32Q20; 32V05; 53A30; 53A40; 53B35; 53C15; 53C25; 53C29; 53C55; 58A30

Поступила: 26 июля 2016 г.; в окончательном варианте 13 января 2017 г.; опубликована 19 января 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.004



Реферативные базы данных:
ArXiv: 1606.01069


© МИАН, 2024