RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 017, 13 стр. (Mi sigma1217)

Эта публикация цитируется в 5 статьях

Klein's Fundamental $2$-Form of Second Kind for the $C_{ab}$ Curves

Joe Suzuki

Department of Mathematics, Osaka University, Machikaneyama Toyonaka, Osaka 560-0043, Japan

Аннотация: In this paper, we derive the exact formula of Klein's fundamental $2$-form of second kind for the so-called $C_{ab}$ curves. The problem was initially solved by Klein in the 19th century for the hyper-elliptic curves, but little progress had been seen for its extension for more than 100 years. Recently, it has been addressed by several authors, and was solved for subclasses of the $C_{ab}$ curves whereas they found a way to find its individual solution numerically. The formula gives a standard cohomological basis for the curves, and has many applications in algebraic geometry, physics, and applied mathematics, not just analyzing sigma functions in a general way.

Ключевые слова: $C_{ab}$ curves; Klein's fundamental $2$-form of second kind; cohomological basis; symmetry.

MSC: 14H42; 14H50; 14H55

Поступила: 5 января 2017 г.; в окончательном варианте 11 марта 2017 г.; опубликована 16 марта 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.017



Реферативные базы данных:
ArXiv: 1701.00931


© МИАН, 2024