RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 020, 10 стр. (Mi sigma1220)

Эта публикация цитируется в 6 статьях

Simplified Expressions of the Multi-Indexed Laguerre and Jacobi Polynomials

Satoru Odake, Ryu Sasaki

Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

Аннотация: The multi-indexed Laguerre and Jacobi polynomials form a complete set of orthogonal polynomials. They satisfy second-order differential equations but not three term recurrence relations, because of the ‘holes’ in their degrees. The multi-indexed Laguerre and Jacobi polynomials have Wronskian expressions originating from multiple Darboux transformations. For the ease of applications, two different forms of simplified expressions of the multi-indexed Laguerre and Jacobi polynomials are derived based on various identities. The parity transformation property of the multi-indexed Jacobi polynomials is derived based on that of the Jacobi polynomial.

Ключевые слова: multi-indexed orthogonal polynomials; Laguerre and Jacobi polynomials; Wronskian formula; determinant formula.

MSC: 42C05; 33C45; 34A05

Поступила: 30 декабря 2016 г.; в окончательном варианте 23 марта 2017 г.; опубликована 29 марта 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.020



Реферативные базы данных:
ArXiv: 1612.00927


© МИАН, 2024