RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 023, 16 стр. (Mi sigma1223)

Эта публикация цитируется в 1 статье

On Toric Poisson Structures of Type $(1,1)$ and their Cohomology

Arlo Caine, Berit Nilsen Givens

California State Polytechnic University Pomona, 3801 W. Temple Ave., Pomona, CA, 91768, USA

Аннотация: We classify real Poisson structures on complex toric manifolds of type $(1,1)$ and initiate an investigation of their Poisson cohomology. For smooth toric varieties, such structures are necessarily algebraic and are homogeneous quadratic in each of the distinguished holomorphic coordinate charts determined by the open cones of the associated simplicial fan. As an approximation to the smooth cohomology problem in each ${\mathbb C}^n$ chart, we consider the Poisson differential on the complex of polynomial multi-vector fields. For the algebraic problem, we compute $H^0$ and $H^1$ under the assumption that the Poisson structure is generically non-degenerate. The paper concludes with numerical investigations of the higher degree cohomology groups of $({\mathbb C}^2,\pi_B)$ for various $B$.

Ключевые слова: toric; Poisson structures; group-valued momentum map; Poisson cohomology.

MSC: 53D17; 37J15

Поступила: 29 октября 2016 г.; в окончательном варианте 28 марта 2017 г.; опубликована 6 апреля 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.023



Реферативные базы данных:
ArXiv: 1610.09445


© МИАН, 2024