RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 028, 20 стр. (Mi sigma1228)

Эта публикация цитируется в 4 статьях

A Complete Set of Invariants for LU-Equivalence of Density Operators

Jacob Turnera, Jason Mortonb

a Korteweg-de Vries Institute, University of Amsterdam, 1098 XG Amsterdam, The Netherlands
b Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Аннотация: We show that two density operators of mixed quantum states are in the same local unitary orbit if and only if they agree on polynomial invariants in a certain Noetherian ring for which degree bounds are known in the literature. This implicitly gives a finite complete set of invariants for local unitary equivalence. This is done by showing that local unitary equivalence of density operators is equivalent to local ${\rm GL}$ equivalence and then using techniques from algebraic geometry and geometric invariant theory. We also classify the SLOCC polynomial invariants and give a degree bound for generators of the invariant ring in the case of $n$-qubit pure states. Of course it is well known that polynomial invariants are not a complete set of invariants for SLOCC.

Ключевые слова: quantum entanglement; local unitary invariants; SLOCC invariants; invariant rings; geometric invariant theory; complete set of invariants; density operators; tensor networks.

MSC: 20G05; 20G45; 81R05; 20C35; 22E70

Поступила: 26 ноября 2016 г.; в окончательном варианте 28 апреля 2017 г.; опубликована 2 мая 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.028



Реферативные базы данных:
ArXiv: 1507.03350


© МИАН, 2024