RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 031, 14 стр. (Mi sigma1231)

Эта публикация цитируется в 3 статьях

Zamolodchikov Tetrahedral Equation and Higher Hamiltonians of $2d$ Quantum Integrable Systems

Dmitry V. Talalaev

Geometry and Topology Department, Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia

Аннотация: The main aim of this work is to develop a method of constructing higher Hamiltonians of quantum integrable systems associated with the solution of the Zamolodchikov tetrahedral equation. As opposed to the result of V. V. Bazhanov and S. M. Sergeev the approach presented here is effective for generic solutions of the tetrahedral equation without spectral parameter. In a sense, this result is a two-dimensional generalization of the method by J.-M. Maillet. The work is a part of the project relating the tetrahedral equation with the quasi-invariants of 2-knots.

Ключевые слова: Zamolodchikov tetrahedral equation; quantum integrable systems; star-triangle transformation.

MSC: 16T25

Поступила: 17 января 2017 г.; в окончательном варианте 13 мая 2017 г.; опубликована 22 мая 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.031



Реферативные базы данных:
ArXiv: 1505.06579


© МИАН, 2024