RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 034, 20 стр. (Mi sigma1234)

Эта публикация цитируется в 3 статьях

Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries

Sergey Ya. Startsev

Institute of Mathematics, Ufa Scientific Center, Russian Academy of Sciences, 112 Chernyshevsky Str., Ufa, Russia

Аннотация: The paper is devoted to hyperbolic (generally speaking, non-Lagrangian and nonlinear) partial differential systems possessing a full set of differential operators that map any function of one independent variable into a symmetry of the corresponding system. We demonstrate that a system has the above property if and only if this system admits a full set of formal integrals (i.e., differential operators which map symmetries into integrals of the system). As a consequence, such systems possess both direct and inverse Noether operators (in the terminology of a work by B. Fuchssteiner and A. S. Fokas who have used these terms for operators that map cosymmetries into symmetries and perform transformations in the opposite direction). Systems admitting Noether operators are not exhausted by Euler–Lagrange systems and the systems with formal integrals. In particular, a hyperbolic system admits an inverse Noether operator if a differential substitution maps this system into a system possessing an inverse Noether operator.

Ключевые слова: Liouville equation; Toda chain; integral; Darboux integrability; higher symmetry; hyperbolic system of partial differential equations; conservation laws; Noether theorem.

MSC: 37K05; 37K10; 37K35; 35L65; 35L70

Поступила: 16 сентября 2016 г.; в окончательном варианте 18 мая 2017 г.; опубликована 27 мая 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.034



Реферативные базы данных:
ArXiv: 1511.09418


© МИАН, 2024