Эта публикация цитируется в
5 статьях
On the Spectra of Real and Complex Lamé Operators
William A. Haese-Hilla,
Martin A. Hallnäsb,
Alexander P. Veselova a Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
b Department of Mathematical Sciences, Chalmers University of Technology and the University of Gothenburg, SE-412 96 Gothenburg, Sweden
Аннотация:
We study Lamé operators of the form
\begin{gather*}
L = -\frac{d^2}{dx^2} + m(m+1)\omega^2\wp(\omega x+z_0),
\end{gather*}
with
$m\in\mathbb{N}$ and
$\omega$ a half-period of
$\wp(z)$. For rectangular period lattices, we can choose
$\omega$ and
$z_0$ such that the potential is real, periodic and regular. It is known after Ince that the spectrum of the corresponding Lamé operator has a band structure with not more than
$m$ gaps. In the first part of the paper, we prove that the opened gaps are precisely the first
$m$ ones. In the second part, we study the Lamé spectrum for a generic period lattice when the potential is complex-valued. We concentrate on the
$m=1$ case, when the spectrum consists of two regular analytic arcs, one of which extends to infinity, and briefly discuss the
$m=2$ case, paying particular attention to the rhombic lattices.
Ключевые слова:
Lamé operators; finite-gap operators; spectral theory; non-self-adjoint operators.
MSC: 34L40;
47A10;
33E10 Поступила: 4 апреля 2017 г.; в окончательном варианте
21 июня 2017 г.; опубликована
1 июля 2017 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2017.049