RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 050, 17 стр. (Mi sigma1250)

Эта публикация цитируется в 9 статьях

Topology of Functions with Isolated Critical Points on the Boundary of a 2-Dimensional Manifold

Bohdana I. Hladysh, Aleksandr O. Prishlyak

Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, 4-e Akademika Glushkova Ave., Kyiv, 03127, Ukraine

Аннотация: This paper focuses on the problem of topological equivalence of functions with isolated critical points on the boundary of a compact surface $M$ which are also isolated critical points of their restrictions to the boundary. This class of functions we denote by $\Omega(M)$. Firstly, we've obtained the topological classification of above-mentioned functions in some neighborhood of their critical points. Secondly, we've constructed a chord diagram from the neighborhood of a critical level. Also the minimum number of critical points of such functions is being considered. And finally, the criterion of global topological equivalence of functions which belong to $\Omega(M)$ and have three critical points has been developed.

Ключевые слова: topological classification; isolated boundary critical point; optimal function; chord diagram.

MSC: 57R45; 57R70

Поступила: 18 ноября 2016 г.; в окончательном варианте 16 июня 2017 г.; опубликована 1 июля 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.050



Реферативные базы данных:


© МИАН, 2024