RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 052, 28 стр. (Mi sigma1252)

Эта публикация цитируется в 8 статьях

A Combinatorial Study on Quiver Varieties

Shigeyuki Fujiia, Satoshi Minabeb

a Accenture Strategy, 107-8672 Tokyo, Japan
b Department of Mathematics, Tokyo Denki University, 120-8551 Tokyo, Japan

Аннотация: This is an expository paper which has two parts. In the first part, we study quiver varieties of affine $A$-type from a combinatorial point of view. We present a combinatorial method for obtaining a closed formula for the generating function of Poincaré polynomials of quiver varieties in rank 1 cases. Our main tools are cores and quotients of Young diagrams. In the second part, we give a brief survey of instanton counting in physics, where quiver varieties appear as moduli spaces of instantons, focusing on its combinatorial aspects.

Ключевые слова: Young diagram; core; quotient; quiver variety; instanton.

MSC: 14C05; 14D21; 05A19; 05E10

Поступила: 13 января 2017 г.; в окончательном варианте 30 июня 2017 г.; опубликована 6 июля 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.052



Реферативные базы данных:


© МИАН, 2024