RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 060, 29 стр. (Mi sigma1260)

Эта публикация цитируется в 8 статьях

Integrability, Quantization and Moduli Spaces of Curves

Paolo Rossi

IMB, UMR5584 CNRS, Université de Bourgogne Franche-Comté, F-21000 Dijon, France

Аннотация: This paper has the purpose of presenting in an organic way a new approach to integrable $(1+1)$-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten–Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré.

Ключевые слова: moduli space of stable curves; integrable systems; cohomological field theories; double ramification cycle; double ramification hierarchy.

MSC: 14H10; 14H70; 37K10

Поступила: 28 февраля 2017 г.; в окончательном варианте 25 июля 2017 г.; опубликована 29 июля 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.060



Реферативные базы данных:


© МИАН, 2024