RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 063, 13 стр. (Mi sigma1263)

Эта публикация цитируется в 1 статье

The Fock–Rosly Poisson Structure as Defined by a Quasi-Triangular $r$-Matrix

Victor Mouquin

University of Toronto, Toronto ON, Canada

Аннотация: We reformulate the Poisson structure discovered by Fock and Rosly on moduli spaces of flat connections over marked surfaces in the framework of Poisson structures defined by Lie algebra actions and quasitriangular $r$-matrices, and we show that it is an example of a mixed product Poisson structure associated to pairs of Poisson actions, which were studied by J.-H. Lu and the author. The Fock–Rosly Poisson structure corresponds to the quasi-Poisson structure studied by Massuyeau, Turaev, Li-Bland, and Ševera under an equivalence of categories between Poisson and quasi-Poisson spaces.

Ключевые слова: flat connections; Poisson Lie groups; $r$-matrices; quasi-Poisson spaces.

MSC: 53D17; 53D30; 17B62

Поступила: 26 марта 2017 г.; в окончательном варианте 1 августа 2017 г.; опубликована 9 августа 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.063



Реферативные базы данных:


© МИАН, 2024