RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 065, 29 стр. (Mi sigma1265)

Эта публикация цитируется в 6 статьях

Rational Solutions of the Painlevé-II Equation Revisited

Peter D. Miller, Yue Sheng

Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA

Аннотация: The rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann–Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlevé-II functions, and then we describe three different Riemann–Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka–Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo–Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka–Newell and Bertola–Bothner Riemann–Hilbert representations of the rational Painlevé-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlevé-II functions obtained from these Riemann–Hilbert representations by means of the steepest descent method.

Ключевые слова: Painlevé equations; rational functions; Riemann–Hilbert problems; steepest descent method.

MSC: 33E17; 34M55; 34M56; 35Q15; 37K15; 37K35; 37K40

Поступила: 18 апреля 2017 г.; в окончательном варианте 7 августа 2017 г.; опубликована 16 августа 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.065



Реферативные базы данных:


© МИАН, 2024