RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 072, 19 стр. (Mi sigma1272)

Эта публикация цитируется в 2 статьях

On the Automorphisms of a Rank One Deligne–Hitchin Moduli Space

Indranil Biswasa, Sebastian Hellerb

a School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
b Institut für Differentialgeometrie, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany

Аннотация: Let $X$ be a compact connected Riemann surface of genus $g \geq 2$, and let ${\mathcal M}_{\rm DH}$ be the rank one Deligne–Hitchin moduli space associated to $X$. It is known that ${\mathcal M}_{\rm DH}$ is the twistor space for the hyper-Kähler structure on the moduli space of rank one holomorphic connections on $X$. We investigate the group $\operatorname{Aut}({\mathcal M}_{\rm DH})$ of all holomorphic automorphisms of ${\mathcal M}_{\rm DH}$. The connected component of $\operatorname{Aut}({\mathcal M}_{\rm DH})$ containing the identity automorphism is computed. There is a natural element of $H^2({\mathcal M}_{\rm DH}, {\mathbb Z})$. We also compute the subgroup of $\operatorname{Aut}({\mathcal M}_{\rm DH})$ that fixes this second cohomology class. Since ${\mathcal M}_{\rm DH}$ admits an ample rational curve, the notion of algebraic dimension extends to it by a theorem of Verbitsky. We prove that ${\mathcal M}_{\rm DH}$ is Moishezon.

Ключевые слова: Hodge moduli space; Deligne–Hitchin moduli space; $\lambda$-connections; Moishezon twistor space.

MSC: 14D20; 14J50; 14H60

Поступила: 13 мая 2017 г.; в окончательном варианте 1 сентября 2017 г.; опубликована 6 сентября 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.072



Реферативные базы данных:


© МИАН, 2024