RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2017, том 13, 073, 26 стр. (Mi sigma1273)

Эта публикация цитируется в 13 статьях

Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings

Ismagil Habibullin, Mariya Poptsova

Ufa Institute of Mathematics, 112 Chernyshevsky Str., Ufa 450008, Russia

Аннотация: The main goal of the article is testing a new classification algorithm. To this end we apply it to a relevant problem of describing the integrable cases of a subclass of two-dimensional lattices. By imposing the cut-off conditions $u_{-1}=c_0$ and $u_{N+1}=c_1$ we reduce the lattice $u_{n,xy}=\alpha(u_{n+1},u_n,u_{n-1})u_{n,x}u_{n,y}$ to a finite system of hyperbolic type PDE. Assuming that for each natural $N$ the obtained system is integrable in the sense of Darboux we look for $\alpha$. To detect the Darboux integrability of the hyperbolic type system we use an algebraic criterion of Darboux integrability which claims that the characteristic Lie rings of such a system must be of finite dimension. We prove that up to the point transformations only one lattice in the studied class passes the test. The lattice coincides with the earlier found Ferapontov–Shabat–Yamilov equation. The one-dimensional reduction $x=y$ of this lattice passes also the symmetry integrability test.

Ключевые слова: two-dimensional integrable lattice; cut-off boundary condition; open chain; Darboux integrable system; characteristic Lie ring.

MSC: 37K10; 37K30; 37D99

Поступила: 30 марта 2017 г.; в окончательном варианте 24 августа 2017 г.; опубликована 7 сентября 2017 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2017.073



Реферативные базы данных:


© МИАН, 2024